From Wikipedia, the free encyclopedia
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals.
In all formulas the constant a is assumed to be nonzero, and C
denotes the constant of integration.
Integrals involving only hyperbolic sine functions
[edit]
![{\displaystyle \int \sinh ax\,dx={\frac {1}{a}}\cosh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/73afd2753503c736e59bf4dd68a6ef869e8090fa)
![{\displaystyle \int \sinh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax-{\frac {x}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8b8b2dd35b9f8dcf819a74053fa536f6955aedad)
![{\displaystyle \int \sinh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ^{n-1}ax)(\cosh ax)-{\frac {n-1}{n}}\displaystyle \int \sinh ^{n-2}ax\,dx,&n>0\\{\frac {1}{a(n+1)}}(\sinh ^{n+1}ax)(\cosh ax)-{\frac {n+2}{n+1}}\displaystyle \int \sinh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/878f791c56c73d432dc08058b0f3bd33c1a642ef)
![{\displaystyle {\begin{aligned}\int {\frac {dx}{\sinh ax}}&={\frac {1}{a}}\ln \left|\tanh {\frac {ax}{2}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\cosh ax+1}{\sinh ax}}\right|+C\\&={\frac {1}{a}}\ln \left|{\frac {\sinh ax}{\cosh ax+1}}\right|+C\\&={\frac {1}{2a}}\ln \left|{\frac {\cosh ax-1}{\cosh ax+1}}\right|+C\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/404e71b18ef9e8e604970e7cf0b3e35735563ae1)
![{\displaystyle \int {\frac {dx}{\sinh ^{n}ax}}=-{\frac {\cosh ax}{a(n-1)\sinh ^{n-1}ax}}-{\frac {n-2}{n-1}}\int {\frac {dx}{\sinh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d9d8c5360a98e5d039cac52d4f7b678d74fa9bc1)
![{\displaystyle \int x\sinh ax\,dx={\frac {1}{a}}x\cosh ax-{\frac {1}{a^{2}}}\sinh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/24d8780ba8c6da198d7c87a147bc99b2982dec3a)
![{\displaystyle \int (\sinh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh bx)(\cosh ax)-b(\cosh bx)(\sinh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/66aa553178cbb55a984df7ac955b075551a7f335)
Integrals involving only hyperbolic cosine functions
[edit]
![{\displaystyle \int \cosh ax\,dx={\frac {1}{a}}\sinh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/8478514124631a7efb7098e4b9c8ce2068ccf050)
![{\displaystyle \int \cosh ^{2}ax\,dx={\frac {1}{4a}}\sinh 2ax+{\frac {x}{2}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/26745e9ee399f67d44059c3618eee43c0fdfb630)
![{\displaystyle \int \cosh ^{n}ax\,dx={\begin{cases}{\frac {1}{an}}(\sinh ax)(\cosh ^{n-1}ax)+{\frac {n-1}{n}}\displaystyle \int \cosh ^{n-2}ax\,dx,&n>0\\-{\frac {1}{a(n+1)}}(\sinh ax)(\cosh ^{n+1}ax)+{\frac {n+2}{n+1}}\displaystyle \int \cosh ^{n+2}ax\,dx,&n<0,n\neq -1\end{cases}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/7ffb25db1879190b15fc30f2d75aebefce611fce)
![{\displaystyle {\begin{aligned}\int {\frac {dx}{\cosh ax}}&={\frac {2}{a}}\arctan e^{ax}+C\\&={\frac {1}{a}}\arctan(\sinh ax)+C\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/2149f423a0c0272d90a4b571bf4a0086d110774d)
![{\displaystyle \int {\frac {dx}{\cosh ^{n}ax}}={\frac {\sinh ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {n-2}{n-1}}\int {\frac {dx}{\cosh ^{n-2}ax}}\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/cd458e54ed3699ebc1f296c814983668ee3bd34a)
![{\displaystyle \int x\cosh ax\,dx={\frac {1}{a}}x\sinh ax-{\frac {1}{a^{2}}}\cosh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/dbf668e6a2fd148b1877031cbce32f46befa35cd)
![{\displaystyle \int x^{2}\cosh ax\,dx=-{\frac {2x\cosh ax}{a^{2}}}+\left({\frac {x^{2}}{a}}+{\frac {2}{a^{3}}}\right)\sinh ax+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/225d93801d717e120731343bfa25b123a5388141)
![{\displaystyle \int (\cosh ax)(\cosh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\cosh bx)-b(\sinh bx)(\cosh ax){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/31821ed91dd9384d424e69405c092678351366ab)
or
times The Logistic Function
Integrals of hyperbolic tangent, cotangent, secant, cosecant functions
[edit]
![{\displaystyle \int \tanh x\,dx=\ln \cosh x+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/d34084777ab4d5122b6fb3a917d140df1caad0dd)
![{\displaystyle \int \tanh ^{2}ax\,dx=x-{\frac {\tanh ax}{a}}+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/4100e7bd27ab3e9516e364a7f1bb1cc4f101d10e)
![{\displaystyle \int \tanh ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\tanh ^{n-1}ax+\int \tanh ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/aa56801fdfacb4eda9dc3fff468d055ceaa8f665)
![{\displaystyle \int \coth x\,dx=\ln |\sinh x|+C,{\text{ for }}x\neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/1fd10aa5030fc327fc1eba419cb87581bd065282)
![{\displaystyle \int \coth ^{n}ax\,dx=-{\frac {1}{a(n-1)}}\coth ^{n-1}ax+\int \coth ^{n-2}ax\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/69304e9c91b1eefcb7bc218a5080db96369e8e37)
![{\displaystyle \int \operatorname {sech} \,x\,dx=\arctan \,(\sinh x)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/c567185304799602087bcbe1b470a2b9e5b7880b)
![{\displaystyle \int \operatorname {csch} \,x\,dx=\ln \left|\tanh {x \over 2}\right|+C=\ln \left|\coth {x}-\operatorname {csch} {x}\right|+C,{\text{ for }}x\neq 0}](https://wikimedia.org/api/rest_v1/media/math/render/svg/9c5e31944686fc44f7fac3e2e5033a97d005a159)
Integrals involving hyperbolic sine and cosine functions
[edit]
![{\displaystyle \int (\cosh ax)(\sinh bx)\,dx={\frac {1}{a^{2}-b^{2}}}{\big (}a(\sinh ax)(\sinh bx)-b(\cosh ax)(\cosh bx){\big )}+C\qquad {\mbox{(for }}a^{2}\neq b^{2}{\mbox{)}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f8282fbfd2c2d820938cca5be2617f08beee218f)
![{\displaystyle {\begin{aligned}\int {\frac {\cosh ^{n}ax}{\sinh ^{m}ax}}\,dx&={\frac {\cosh ^{n-1}ax}{a(n-m)\sinh ^{m-1}ax}}+{\frac {n-1}{n-m}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&=-{\frac {\cosh ^{n+1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-m+2}{m-1}}\int {\frac {\cosh ^{n}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\\&=-{\frac {\cosh ^{n-1}ax}{a(m-1)\sinh ^{m-1}ax}}+{\frac {n-1}{m-1}}\int {\frac {\cosh ^{n-2}ax}{\sinh ^{m-2}ax}}\,dx\qquad {\mbox{(for }}m\neq 1{\mbox{)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/85c496aada1bce9259d2825e8606a87b9582a225)
![{\displaystyle {\begin{aligned}\int {\frac {\sinh ^{m}ax}{\cosh ^{n}ax}}\,dx&={\frac {\sinh ^{m-1}ax}{a(m-n)\cosh ^{n-1}ax}}+{\frac {m-1}{n-m}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n}ax}}\,dx\qquad {\mbox{(for }}m\neq n{\mbox{)}}\\&={\frac {\sinh ^{m+1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-n+2}{n-1}}\int {\frac {\sinh ^{m}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\\&=-{\frac {\sinh ^{m-1}ax}{a(n-1)\cosh ^{n-1}ax}}+{\frac {m-1}{n-1}}\int {\frac {\sinh ^{m-2}ax}{\cosh ^{n-2}ax}}\,dx\qquad {\mbox{(for }}n\neq 1{\mbox{)}}\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/09577c7823ece9759ea4ad948902ae27284005a3)
Integrals involving hyperbolic and trigonometric functions
[edit]
![{\displaystyle \int \sinh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3caba5d0268fdc35ea5e9a9fc07b4b028ded023a)
![{\displaystyle \int \sinh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/0e42067465fc2f9e4aead56de5340c0babeb9434)
![{\displaystyle \int \cosh(ax+b)\sin(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\sin(cx+d)-{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\cos(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/01cdc27e035389e4fbb28829c579b7490cd00399)
![{\displaystyle \int \cosh(ax+b)\cos(cx+d)\,dx={\frac {a}{a^{2}+c^{2}}}\sinh(ax+b)\cos(cx+d)+{\frac {c}{a^{2}+c^{2}}}\cosh(ax+b)\sin(cx+d)+C}](https://wikimedia.org/api/rest_v1/media/math/render/svg/e2f2c51fa5c08c010c90e1aef45ac2d958f008be)